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Abstract 
 
This study presents the pure bending and coupled bending-torsional vibration characteristics of a beam structure 

which consists of two cantilever beams and a rigid body at their free ends. This structure is available in many mechani-
cal structures such as robots, space constructions, and optical pickup actuators in optical disc drives (ODDs). In order to 
depict the vibration of the beam structure originating from the deflection and torsion of two beams, the motion equa-
tions and continuity conditions are analytically induced by using energy conservation. In the process that the free vibra-
tion problem is solved, two independent characteristic equations are obtained. The former is an equation for the pure 
bending vibration of two beams, and the latter is for their coupled bending-torsional vibration. It is proved that these 
characteristic equations are exact by comparing natural frequencies obtained from FEM. As natural frequencies are 
described in many dimensional variations, the relation between vibration characteristics and the dimensions of the 
given system is also investigated. Finally, resonant frequencies from test results are presented to confirm the validation 
of this study for a new type optical pickup actuator. 
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1. Introduction 

Over the years, a large number of studies have been 
conducted to explain the dynamic characteristics of 
beam structures. The studies mainly focus on the 
analysis of dynamic behaviors about a single beam 
with a tip mass under various boundary conditions, a 
beam with non-uniform sections such as a stepped 
beam, and a multi-beam structure. 

Gurgoze and Batan treated the vibrations of a re-
strained cantilever beam carrying a heavy tip body [1]. 
Farghaly presented the vibration characteristics of an 
axially loaded cantilever beam with an elastically 
mounted end mass [2]. Jang and Bert solved the free 
vibration problems of a stepped beam under various 

boundary conditions [3]. Rossi and Laura obtained 
natural frequencies in a cantilever with non-uniform 
thickness and a tip mass [4]. Auciello introduced the 
solution of a vibration problem in a linearly tapered 
cantilever beam having the eccentricity of an end 
mass [5]. The coupling effect between bending and 
torsional vibrations on the natural frequencies and 
modes was explained by Dokumaci [6]. Exact fre-
quency equation and mode shape expressions for a 
coupled bending-torsional beam with cantilever end 
condition were derived by Banerjee [7]. As treating 
the coupling effect of a beam, Gökdağ and Kopmaz 
examined the coupled flexural-torsional free and 
forced vibrations of a beam with several tip attach-
ments [8]. Anderson expanded the subject for a sim-
ple beam into that for a multi-beam structure and 
solved the coupled bending-longitudinal vibration 
problem of two parallel and uniform beams connected 
by a rigid body with its mass and mass moment of 
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inertia [9]. His result shows that natural frequencies 
and modes are affected by the geometrical coupling 
and dimensional parameters. Kwon et al. improved 
Anderson’s model into a stepped beam structure and 
showed that natural frequencies were changed by 
various beam conditions [10]. 

In this paper, vibration characteristics of two beams 
caused by a connected rigid body are analyzed. Two 
beams are assumed to be uniform and sufficiently 
slender to ignore their shear deformations and rotary 
inertias in lateral directions. For making a mathemati-
cal model for this system, kinetic and potential ener-
gies are induced and energy conservative law are used. 
As boundary and joint conditions are applied to the 
mathematical model, the equations of motion and 
continuity conditions at the free ends of two beams 
are acquired. In the process that solves induced 
boundary value problems, two characteristic equa-
tions that can yield natural frequencies and modes for 
this beam structure are obtained. This paper shows 
that dynamic behaviors described by the characteristic 
equations accord with the pure bending (two beams 
are deflected equally and simultaneously.) and cou-
pled bending-torsional vibrations of two beams with a 
rigid body at their free ends, respectively. By simulat-
ing the vibration characteristics of this system by FE 
analysis and comparing them with those of this study, 
it is proved that the characteristic equations explain 
the pure bending and coupled motions of beams. By 
changing dimensions in this system, the variations of 
fundamental natural frequencies are also explored and 
analyzed to understand the dynamic characteristics. 
Finally, resonant frequencies are measured by a real 
test and these are compared with the values from the 
exact solution of this study. It is shown that the vibra-
tion characteristics of a new type actuator can be ex-
pressed by this work. 
 

2. Research motivation 

Optical pickups, which are used in ODDs, are 
components to read and write information data on an 
optical disc such as CD, DVD and Blu-ray disc. In the 
optical pickup, the laser is focused on a rotating disc 
to read and write the information by an objective lens 
(OL). A real plastic disc has various deflections oc-
curring in the manufacturing process and is mounted 
with a skew angle on a spindle motor. Therefore, the 
OL moves along the perpendicular direction to the 
disc surface and along the direction crossing the data 

track for focusing and tracking controls of the laser 
spot to accurately follow the disc displacement. The 
driving mechanism of this OL is the optical pickup 
actuator. Conventional actuators include a moving 
part and a fixed part. The moving part, which has a 
lens-holder, coils and the OL, is suspended by four or 
six wire-suspensions as shown in Fig. 1. In general, 
the diameter of the wire-suspension is 0.1mm or less. 
The moving part rotates a small angle around an axis 
parallel to the wire-suspension and moves to the fo-
cusing and tracking directions. 

 
 

 
 
Fig. 1. Conventional optical pickup actuator with four wire-
suspensions. 
 
 

  
(a) Configuration of new type 4-axis actuator 

 
 

 
 

(b) Configuration of new type 3-axis actuator 
 
Fig. 2. Optical pickup actuators with two wire-suspensions. 
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Recent researches in ODDs, which have focused on 
high density and high data capacity [11, 12], require 
the control of a quite large tilt angle in the actuator. 
There are several studies on actuators satisfying this 
requirement. Motegi et al. introduced a 4-axis actua-
tor to achieve two tilt controls and He et al. proposed 
a new type of 3-axis actuator shown in Figs. 2-a, 2-b 
[13, 14]. These actuators have two wire-suspensions 
to get high flexibility in the radial tilt direction or/and 
tangential tilt direction. Although the controllability 
of these three-axis and four-axis actuators is not better 
than conventional types, the merits obtained by their 
simple and slim structures are expected to raise the 
usability of two wire-suspension type actuator in next 
generation ODDs such as near-field recording sys-
tems [11, 12].  

Although FE analysis is widely used in the analysis 
of mechanical systems, mathematical analysis is 
treated as a useful tool because the decision of basic 
design specifications and the modification of design 
are easily achieved. For the analysis of a two wire-
suspension type actuator, Anderson’s study can be 
used to describe the lateral vibration (in-plane mo-
tion) of the actuator as a coupled axial-bending mo-
tion is considered [9]. The lateral vibration analysis 
can express focusing, tracking, pitching, and yawing 
mode vibrations in the two wire-suspension type ac-
tuator. However, there are no other studies on coupled 
bending-torsional vibration to characterize the rotat-
ing vibration of the actuator. This paper aims to de-
scribe the vibration characteristics for rotating motion 
as the coupled bending-torsional vibration for a two-
beam structure is mathematically analyzed. 
 

3. Mathematical formulation 

Two uniform cantilevers joined by a rigid body at 
their free ends are shown in Fig. 3. Two beams are 
slender and uniform so that their shear deformations 
and rotary inertias in lateral directions can be ignored. 
In order to depict the motion of the rigid body caused 
by bending and torsional vibrations of two beams, it 
is assumed that the beams are deflectable along the 

2x  direction and rotatable around the 1x  axis. On 
the other hand, longitudinal deformation in the 1x  
direction and deflection along the 3x direction are not 
considered. Therefore rotation angles 1 1 2 1( , ), ( , )x t x tφ φ  
around the 1x axis and lateral deflections 

1 1 2 1( , ), ( , )v x t v x t of 2x direction in two beams should 
be considered to describe the motion of this system.  

 
 
Fig. 3 Two uniform cantilever beams connected by a rigid 
body. 

 
 
By simple-beam theory [15], this system has the 

following boundary conditions at their fixed ends. 
 

1 1 1( , ) ( , ) ( , ) 0s s sx t v x t v x tφ ′= = =  at 1 0x = , 1,2s = ,  
 (1) 

 
where, 1

1
1

( , )( , ) s
s

v x tv x t
x

∂′ =
∂

 denotes lateral deflection  

angle, s  designates each beam, t is time. In addi-
tion, the joint conditions at 1x L=  are  
 

1 2( , ) ( , )L t L tφ φ= , 1 2( , ) ( , )v L t v L t′ ′= ,  

2 1 1 1( , ) ( , ) 2 ( , )v L t v L t r L tφ= − ,  (2) 
 

where, 1r  is the distance along 3x  axis from the 
free end of the beam( 1s = ) to the mass center of the 
rigid body. 

The kinetic and potential(strain) energies of each 
beam are expressed as 

 
2 2

1 1 10

1 1( , ) ( , )
2 2

L

s b s sT J x t Av x t dxρ φ ρ⎡ ⎤= +⎢ ⎥⎣ ⎦∫ & & , 1,2s = ,  

 (3) 
2 2

1 1 10

1 1( , ) ( , )
2 2

L

s b s sV GJ x t EIv x t dxφ⎡ ⎤′ ′′= +⎢ ⎥⎣ ⎦∫ , 1,2s = ,  

 (4) 
 

where, L  denotes the length of the beam, ρ  its 
density, E  the modulus of elasticity, G  the 
modulus of elasticity in shear, A  the cross-     
sectional area, I  the area moment of inertia, bJ  

the polar moment of inertia, 1
1

1

( , )( , ) s
s

x tx t
x

φφ ∂′ =
∂

, 

1
1

( , )( , ) s
s

x tx t
t

φφ ∂=
∂

& , 1
1

( , )( , ) s
s

v x tv x t
t

∂=
∂

& , etc. In  Eq. 

(3), the rotary inertia term for the beam is neglected. 
The potential energy of the rigid body is not consid-
ered in this paper. Its kinetic energy is 



 K. T. Lee / Journal of Mechanical Science and Technology 23 (2009) 358~371 361 
 

{ }2
3 1 1 1 1 1

2 2
1 1 2 1

1 ( , ) ( , ) ( , )
2
1 1( , ) ( , )
2 2

T m v L t a v L t r L t

J L t J v L t

φ

φ

′= + −

′+ +

&& &

& &

,  (5) 

 
where, m  is the mass of the rigid body, 1a  the 
distance between the free end of the 1st beam and the 
mass center of the rigid body along 1x  axis, 

( )2 2
1 0 012

mJ b L= +  and ( )2 2
2 0 012

mJ b c= +  the mass 

moments of inertia defined at its mass center. The 
mass and mass moments of inertia can be expressed 
as follows. 

 
0 0 0 0m b c Lρ= , 2

1 1J mh= , 2
2 1J mk= ,  (6) 

 
where, 0ρ  is the density of the rigid body, 0L     
its width, 0b  its height, 0c  its length, 

( )2 2
1 0 0 /12h b L= +  and ( )2 2

1 0 0 /12k b c= +  the 

radii of gyration of the rigid body, respectively. Un-
folding  Eq. (5), 

 

1

2 2 2 2 2 2 2
3 1 1 1 1 1 1 1

2 2
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
2 2 2 2
1
2 x L

T mv mh mk v ma v

mr ma v v ma rv mrv

φ

φ φ φ
=

⎡ ′ ′= + + + +⎢⎣
⎤′ ′+ − − ⎥⎦

&& & &

& & && & & &

,  (7) 

 
where, 1 1 1( , )x tφ φ=  and 1 1 1( , )v v x t= . The kinetic 
energy of the whole system is 

 

1

3 2 2
2 2

3 1 1 10
1 1 1

2 2 2 2 2 2 2
1 1 1 1 1 1 1

2 2
1 1 1 1 1 1 1 1 1 1 1 1

1 1( , ) ( , )
2 2

1 1 1 1
2 2 2 2

1 .
2

L

j s b s s
j s s

x L

T T T J x t Av x t dx

mv mh mk v ma v

mr ma v v ma rv mrv

ρ φ ρ

φ

φ φ φ

= = =

=

⎡ ⎤= + = +⎢ ⎥⎣ ⎦

⎡ ′ ′+ + + + +⎢⎣
⎤′ ′+ − − ⎥⎦

∑ ∑ ∑∫ & &

&& & &

& & && & & &

 

 (8) 
 
Similarly, the potential energy is 
 

3 2 2
2 2

1 1 10
1 1 1

1 1( , ) ( , )
2 2

L

j s b s s
j s s

V V GJ x t EIv x t dxφ
= = =

⎡ ⎤′ ′′= = +⎢ ⎥⎣ ⎦
∑ ∑ ∑∫ .  

 (9) 
 
According to the energy conservation law, the total 

energy of the system is time-invariant. 
 

3 3 3 3

1 1 1 1

( ) 0j j j j
j j j j

T V T V
t t t= = = =

∂ ∂ ∂+ = + =
∂ ∂ ∂∑ ∑ ∑ ∑ .  (10) 

For obtaining each term of the above, one calcu-
lates the time derivative of the kinetic energy. 

 

1

3 2

101 1

2 2 2
1 1 1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 ,

[

]

L

j s s s sb
j s

x L

T J Av v dx
t

mv v mh mk v v ma v v

mr ma v v ma v v ma rv

ma rv mrv mrv

ρ φ φ ρ

φφ

φφ φ

φ φ φ

= =

=

⎡ ⎤
⎣ ⎦

∂ = +
∂

′ ′ ′ ′+ + + +

′ ′ ′+ + + −

′− − −

∑ ∑∫ & && & &&

& &&& && & && & &&

& && &&& & & && &&

&& & &&& && &
 

 

 (11) 
where, 1( , )s s x tφ φ=  and 1( , )s sv v x t= . The time 
derivative of the potential energy is also 

 
3 2 2

10
1 1 1

L

j s b s s s s
j s s

V V GJ EIv v dx
t t

φ φ
= = =

∂ ∂ ⎡ ⎤′ ′ ′′ ′′= = +⎣ ⎦∂ ∂∑ ∑ ∑∫ & & .  (12) 

 
Integration by parts yields 
 

3 2

10 0
1 1

2
(4)

10 0 0
1

LL

j b s s b s s
s s

LL L
s s s s s s

s

V GJ GJ dx
t

EIv v EIv v EIv v dx

φφ φφ
= =

=

∂ ⎡ ⎤′ ′′= −⎢ ⎥⎣ ⎦∂

⎡ ⎤′′ ′ ′′′+ − +⎢ ⎥⎣ ⎦

∑ ∑ ∫

∑ ∫

& &

& & &

,  (13) 

 

where, 
4

(4) 1
4
1

( , )s
s

v x tv
x

∂=
∂

. Inserting conditions (1) and 

(2) into  Eq. (13) gives us 
 

( )

1

3 2
(4)

10
1 1

1 1 2 1 1 1

2 1 1 1 2 1 1 1( 2 ) .

L

j b s s s s
j s

b b

x L

V GJ EIv v dx
t

GJ GJ EIv v

EIv v EIv v EIv v r

φ φ

φφ φ φ

φ

= =

=

∂ ′′= − +
∂

⎡ ′ ′ ′′ ′+ + +⎣
⎤′′ ′ ′′′ ′′′+ − − − ⎦

∑ ∑∫ & &

& & &
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 (14) 

 
Inserting  Eqs. (11) and (14) into  Eq. (10) makes 
 

2 2
(4)

1 10 0
1 1

1 1 1 1 1 1 2 1

2 2
1 1 1 1 1 1 1 1 1 2 1

2 2
2 1 1 1 1 1 1 1

( ) ( )

[( )

{ ( ) 2

} { ( )

L L

b s b s s s s s
s s

b

b

J GJ dx Av EIv v dx

mv ma v mr EIv EIv v

m h r ma rv mrv rEIv GJ

GJ m k a v ma v ma

ρ φ φ φ ρ

φ

φ φ

φ φ

= =

′′− + +
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′ ′′′ ′+ + − − + +

′ ′+ + + + −

∑ ∑∫ ∫&& & && &

&&&& && &

&& && &&

& && &&

1

1 1

1 2 1} ] 0 .x L

r

EIv EIv v

φ

=′′ ′′ ′+ + =

&&

&

  

 (15) 
 
From the condition that the above equation is always 
zero, motion  Eqs. (16), (17) and continuity condi-
tions (18)-(20) at 1x L=  are obtained. 



362  K. T. Lee / Journal of Mechanical Science and Technology 23 (2009) 358~371 
 

1 1( , ) ( , ) 0,s sx t G x tρφ φ′′− =&&  10 x L< < , 0 t< ,  
1,2s = ,  (16) 

(4)
1 1( , ) ( , ) 0s sAv x t EIv x tρ + =&& , 10 x L< < , 0 t< ,  

1,2s = ,  (17) 

1
1 1 1 1 1 1 2 0

x L
mv ma v mr EIv EIvφ

=
⎡ ⎤′ ′′′ ′′′+ − − − =⎣ ⎦

&&&& && ,   (18) 

]
1

2 2
1 1 1 1 1 1 1 1

1 2 1 2

( )

2 0b b x L

m h r ma rv mrv

r EIv GJ GJ

φ

φ φ
=

⎡ ′+ − − +⎣
′′′ ′ ′+ + =

&& && &&
,   (19) 

1

2 2
1 1 1 1 1 1 1 1 1 2( ) 0

x L
m k a v ma v ma r EIv EIvφ

=
⎡ ⎤′ ′′ ′′+ + − + + =⎣ ⎦

&&&& && . 

  (20) 
 

4. Normalized expressions 

To make forms normalized by time and beam 
length L  and simplify the above equations, one sets 

 
1 1( , ) ( , ) , 1,2s sx t L x t sϕ φ= = ,  (21) 

2 2
1

2 2
1 1

1 1

/ , / , / , / ,
/ , / , / , / ,

/ , / ,
b

x x L t L G m AL
EI GAL GJ EI a a L r r L

h h L k k L

τ σ σ ρ µ ρ
α ζ
= = = =
= = = =
= =

 (22) 

 
where, x  and τ  are the non-dimensional coordi-
nate and time, respectively. Using  Eqs. (21) and 
(22), the normalized forms of  Eqs. (1), (2) and (16)-
(20) become  
 

( , ) ( , ) 0s sx xϕ τ ϕ τ′′ − =&& , 0 1x< < , 0 τ< , 1,2s = ,  
 (23) 

2 (4) ( , ) ( , ) 0s sv x v xα τ τ+ =&& , 0 1x< < , 0 τ< ,  
1,2s = ,  (24) 

(0, ) (0, ) (0, ) 0s s sv vϕ τ τ τ′= = = ,  (25) 

1 2(1, ) (1, )ϕ τ ϕ τ= , 1 2(1, ) (1, )v vτ τ′ ′= ,  

2 1 1(1, ) (1, ) 2 (1, )v v rτ τ ϕ τ= − ,  (26) 

1 1 1

2 2
1 2

(1, ) (1, ) (1, )
(1, ) (1, ) 0

v av r
v v

µ τ µ τ µ ϕ τ
α τ α τ

′+ −
′′′ ′′′− − =

&&&& &&
,  (27) 

2 2
1 1 1

2 2 2
2 1 2

( ) (1, ) (1, ) (1, )
2 (1, ) (1, ) (1, ) 0
h r arv rv
r v

µ ϕ τ µ τ µ τ
α τ ζα ϕ τ ζα ϕ τ

′+ − −
′′′ ′ ′+ + + =

&& && &&
,  (28) 

2 2
1 1 1

2 2
1 2

( ) (1, ) (1, ) (1, )
(1, ) (1, ) 0

k a v av ar
v v

µ τ µ τ µ ϕ τ
α τ α τ

′+ + −
′′ ′′+ + =

&&&& &&
,  (29) 

 
where, /s s xϕ ϕ′ = ∂ ∂ , /s sϕ ϕ τ= ∂ ∂& , /s sv v x′ = ∂ ∂ , 

/s sv v τ= ∂ ∂& , and etc. 

5. Free motion problems 

In synchronous motion systems, the solutions of 
motion equations can be separately expressed as the 
functions of space and time. The solutions of differen-
tial  Eqs. (23) and (24) can be assumed to be 

 
( , ) ( )coss s nx xϕ τ ϕ ω τ= , ( , ) ( )coss s nv x v xτ ω τ= ,  
1,2s = ,  (30) 

 
where, nω  is normalized natural radian frequency. 
To make these equations simpler, the following ex-
pression is used. 

 
2 /nλ ω α= .  (31) 

 
Using  Eqs. (30) and (31), one can convert  Eqs. 

(23)-(29) to the following equations. 
 

2( ) ( ) 0s n sx xϕ ω ϕ′′ + = , 1,2s = ,  (32) 
(4) 4( ) ( ) 0s sv x v xλ− = , 1,2s = ,  (33) 
(0) (0) (0) 0s s sv vϕ ′= = = ,  (34) 

1 2(1) (1)ϕ ϕ= , 1 2(1) (1)v v′ ′= ,  

2 1 1(1) (1) 2 (1)v v rϕ= − ,  (35) 
2 2 2 2 2

1 1 1 1 2(1) (1) (1) (1) (1) 0n n nv a v r v vµω µ ω µ ω ϕ α α′ ′′′ ′′′+ − + + = ,  
  (36) 

2 2 2 2 2
1 1 1

2 2 2
2 1 2

( ) (1) (1) (1)
2 (1) (1) (1) 0

n n nh r ar v r v
r v

µ ω ϕ µ ω µ ω
α ζα ϕ ζα ϕ

′+ − −
′′′ ′ ′− − − =

,  (37) 

2 2 2 2
1

2 2 2
1 1 2

( ) (1) (1)
(1) (1) (1) 0

n n

n

k a v a v
ar v v

µ ω µ ω
µ ω ϕ α α

′+ +
′′ ′′− − − =&&

.  (38) 

 
The solutions of the boundary value problem, satis-

fying boundary conditions (34), are 
 

( ) sins s nx B xϕ ω= , 1,2s = ,  (39) 
( ) (cos cosh ) (sin sinh )s s sv x C x x D x xλ λ λ λ= − + − ,  

1,2s = ,  (40) 
 

where, 1 2 1 1 2, , , ,B B C D C  and 2D  are modal coeffi-
cients. 1 2B B=  is apparent by the first condition 

1 2(1) (1)ϕ ϕ=  in conditions (35). Insertion of  Eqs. 
(39) and (40) to  Eqs. (35)-(38) to obtain other coef-
ficients yields the following matrix form. 

 
{ } { }0 , , 1,2,3,4,5ij ja b i j⎡ ⎤ = =⎣ ⎦ .  (41) 

 
The components of matrix ija⎡ ⎤⎣ ⎦  are as follows. 
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11 0a = , 12a s sh= + , 13 ( )a c ch= − − ,  

14 ( )a s sh= − + , 15a c ch= − , 

21 2 sin na r ω= , 22 ( )a c ch= − − , 23 ( )a s sh= − − ,  

24a c ch= − , 25a s sh= − , 
2

31 sinn na rµ ω ω= ,  
2 2 2 3

32 ( ) ( ) ( )n na c ch a s sh s shµω µ ω λ α λ= − − + + − − ,  
2 2 2 3

33 ( ) ( ) ( )n na s sh a c ch c chµω µ ω λ α λ= − − − − + + ,  
2 3

34 ( )a s shα λ= − − , 2 3
35 ( )a c chα λ= + ,  

2 2 2 2
41 ( ) sin 2 cosn n n na h rµ ω ω ζα ω ω= − + + ,  

2 2
42 ( ) ( )n na ar s sh r c chµ ω λ µ ω= − + + − ,  (42) 

2 2
43 ( ) ( )n na ar c ch r s shµ ω λ µ ω= − + − ,  

2 3
44 2 ( )a r s shα λ= − , 2 3

45 2 ( )a r c chα λ= − + , 
2

51 sinn na arµ ω ω= ,  
2 2 2 2 2 2

52 ( ) ( ) ( ) ( )n na k a s sh a c ch c chµ ω λ µ ω α λ= + + − − − + ,  
2 2 2 2 2 2

53 ( ) ( ) ( ) ( )n na k a c ch a s sh s shµ ω λ µ ω α λ=− + − − − − + ,  
2 2

54 ( )a c chα λ= − + , 2 2
55 ( )a s shα λ= − + , 

 
where, sin sinhs sh λ λ+ = + , sin sinhs sh λ λ− = − , 

cos coshc ch λ λ+ = + , and cos coshc ch λ λ− = − . 
The modal vector is 

 
{ } { }1 1 1 2 2 .T

jb B C D C D=   (43) 

 
Making non-trivial the matrix equation leads to 

det 0ija⎡ ⎤ =⎣ ⎦ . Computer-aided mathematical software 

[16] is useful to solve this determinant. As a result, 
two independent characteristic equations are obtained. 

 
2 2 4 2 2 4

2 2 2 2

2 2 2 2

( 4) ( 4)cos

2 ( 1)sin ]cosh

2 [( 1)cos 2 sin ]sinh

0,

k k

a k

a k a

µ λ µ λ λ

µλ λ λ λ λ

µλ λ λ λ λ λ λ

⎡+ − − +⎣
+ +

− + − +

=

 (44) 

2 2

2

(2 cos sin )(1 cos cosh )
2 sin (sin cosh cos sinh ) 0

n n

n

h
r

αζ ω µλ ω λ λ
λ ω λ λ λ λ

− −
+ + =

.  (45) 

 
The characteristic  Eqs. (44) and (45) yield an in-

finity of characteristic values leading to the associated 
natural modes. However, it should be noted that 
higher modes become increasingly inaccurate due to 
the limitations of simple-beam theory [17]. 

Eq. (44) is comparably similar to  Eq. (8) in refer-
ence [18], which is the characteristic equation for the 
pure bending vibration of a uniform cantilever with a 

tip mass.  
 

4 4

3

2 2 3

1 (1 ) ( ) [ ( ) ( )]
[ ( ) ( )]

2 ( ) [ ( ) ( )]

0,

G H J
H J

F H J

κψη κψη η κη η η
ψη η η
κεη η κε η η η

+ + − + −
− +
− − +

=

  (46) 

 
where, ( ) sinh sinF η η η= , ( ) cosh cosG η η η= , 

( ) sinh cosH η η η= , ( ) cosh sinJ η η η= , 
2

4
m L
EI
ωη = , 

1 /a Lε = , /M mLκ = , 3
2 /J mLψ = , and 

( )2 2
2 0 012

mJ b c= + . Although the system in this paper 

has two beams, it is reasonable to suppose that its 
pure bending vibration is identical with that of a uni-
form cantilever with a tip mass. Thus, it seems quite 
probable that  Eq. (44) is a characteristic equation for 
the pure bending vibration of two beams connected 
by a rigid body. In order to confirm this point, the 
characteristic equation is obtained under the circum-
stance that lateral deflections 1 1( , )v x t , 2 1( , )v x t  are 
only allowed. In such a case, joint conditions (35) are 
replaced by the following conditions. 
 

1 2 1 2(1) (1), (1) (1)v v v v′ ′= = .  (47) 
 
The motion equations and continuity conditions 

can be obtained by inserting  Eq. (40) into  Eqs. 
(36), (38) and (47) in which all sϕ  terms are elimi-
nated. These yield a matrix equation which is ex-
pressed as the first column and the fourth row in ma-
trix (42) are excluded.  

 
{ } { }0 , 1,2,3,5, 2,3,4,5ij ja b i j⎡ ⎤ = = =⎣ ⎦ .  (48) 

 
Similarly, 
 
{ } { }1 1 2 2

T
jb C D C D= .  (49)  

 
det 0ija⎡ ⎤ =⎣ ⎦  for non-trivial matrix equation gives us  
Eq. (44). Therefore, it is confirmed that  Eq. (44) is 
the characteristic equation for the pure bending vibra-
tions of two beams connected by the rigid body at 
their free ends. Consequently, it is expected that  Eq. 
(45) is the characteristic equation for rotating modes 
of the rigid body caused by the coupled bending-
torsional vibration of the beams. 
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6. Numerical results and system analysis 

To illustrate the exactness of the induced character-
istic  Eqs. (44) and (45), fundamental natural fre-
quencies from an FE model for the system and these 
equations are obtained by applying real values for 
dimensional and material parameters to them. Actu-
ally,  Eqs. (44) and (45) yield normalized natural 
frequencies which cannot be directly compared with 
natural frequencies from FEM. Therefore, the follow-
ing relation, which is obtained by comparing  Eq. 
(44) with (A.15) or  Eq. (45) with (A.16), is used to 

obtain natural frequencies.  
 

/nω ω σ= ,  (50) 
 

where, ω  is a natural radian frequency obtained 
from  Eqs. (A.15) and (A.16), nω  a normalized 
natural radian frequency from  Eqs. (44) and (45). 
That is, dividing nω  by 2L Gσ ρ=  gives us ω . 
In a different way, we can directly obtain ω  from  
Eqs. (A.15) and (A.16). 

The following values of the parameters are used in 

Table 1. Exact solutions and FEM results for variation of 0,d L  (pure bending vibration). 
unit : mm, rad./s 

0L  
 

4 6 8 10 12 

 d  Exact FEM Exact FEM Exact FEM Exact FEM Exact FEM 

0.2 6.6 6.5  5.4 5.4  4.7 4.6  4.3 4.2  3.9 3.7  

0.4 23.8 23.8  20.3 20.3  18.0 18.0  16.3 16.3  15.0 15.0  

0.6 46.8 46.8  41.2 41.2  37.3 37.3  34.3 34.3  31.9 31.9  

0.8 72.0 72.0  65.3 65.3  60.2 60.2  56.2 56.1  52.8 52.8  
1ω  

1.0 97.8 97.8  90.8 90.8  85.0 85.0  80.3 80.3  76.2 76.2  

0.2 99.3 99.2  97.7 97.7  96.5 96.5  95.5 95.5  94.6 94.5  

0.4 212.2 212.2  207.2 207.1 204.2 204.2 202.2 202.2 200.8 200.7  

0.6 339.9 339.9  328.0 328.0 320.9 320.9 316.2 316.1 312.8 312.7  

0.8 480.3 480.1  460.8 460.6 448.3 448.2 439.7 439.5 433.3 433.2  
2ω  

1.0 628.6 628.4  602.9 602.7 585.2 585.0 572.3 572.1 562.5 562.3  

0.2 305.5 304.9  296.5 295.6 288.2 286.9 280.3 278.8 273.1 271.1  

0.4 648.9 648.5  639.2 638.7 632.1 631.5 626.2 625.5 620.8 620.0  

0.6 1007.8 1007.3  989.1 988.6 977.7 977.1 969.5 968.9 963.0 962.3  

0.8 1388.1 1387.1  1355.6 1354.5 1336.0 1334.8 1322.5 1321.3  1312.4 1311.1 
3ω  

1.0 1787.3 1785.6  1739.6 1737.9 1709.6 1707.9 1688.7 1687.1  1673.3 1671.6 

0.2 599.2 594.2  569.3 562.3 545.5 537.2 526.8 517.8 512.1 502.8  

0.4 1315.7 1313.1  1292.0 1288.3 1271.1 1266.2 1251.6 1245.3  1233.0 1225.4 

0.6 2033.1 2030.9  2003.8 2001.3 1982.7 1979.8 1965.0 1961.7  1949.2 1945.5 

0.8 2773.1 2768.6  2728.0 2723.1 2699.3 2693.9 2677.9 2672.1  2660.4 2654.1 
4ω  

1.0 3539.5 3533.0  3472.6 3466.0 3431.1 3424.4 3401.8 3394.9  3379.1 3372.1 

0.2 973.6 957.2  930.1 912.4 903.6 886.1 886.3 869.4 874.4 858.2  

0.4 2196.7 2185.4  2142.1 2125.5 2093.4 2071.7 2049.8 2023.7  2011.1 1981.6 

0.6 3409.2 3401.9  3357.7 3348.7 3314.9 3303.9 3275.9 3263.0  3239.4 3224.4 

0.8 4636.5 4622.4  4572.5 4556.3 4526.6 4508.2 4488.6 4467.9  4454.7 4431.4 
5ω  

1.0 5892.2 5873.7  5804.0 5784.9 5746.6 5726.7 5702.9 5682.2  5666.6 5645.0 

0.2 1466.2 1438.3  1428.0 1401.7 1407.8 1383.0 1395.5 1371.9  1387.3 1364.6 

0.4 3280.3 3246.8  3184.4 3139.1 3108.0 3055.3 3047.8 2991.3  3000.4 2942.3 

0.6 5125.5 5105.8  5035.5 5010.1 4956.9 4925.7 4885.8 4849.2  4821.1 4779.8 

0.8 6972.2 6936.2  6877.3 6834.3 6801.8 6751.3 6735.0 6676.7  6673.3 6607.1 
6ω  

1.0 8843.0 8800.0  8726.8 8681.3 8644.3 8596.0 8576.5 8525.2  8516.5 8461.9 
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comparing process for proving the exactness of  Eqs. 
(44) and (45). 

 
30.36, 100 , 8250 / ,

15 , / 2(1 )
L mm kg m

E GPa G E
υ ρ

υ
= = =
= = +

  (Beam), 

3
0 0

0 0 0 0 0

1400 / , 5 ,
5 ,

kg m b mm
c mm m b c L
ρ

ρ
= =
= =

  (Rigid body), 

 
where, υ  is Poisson’s ratio. The cross section of the 
uniform beam is assumed to be circular and its diame-

ter is d . Therefore, the cross-sectional area, the area 
moment of inertia, and the polar moment of inertia 
are 2 / 4A dπ= , 4 / 64I dπ= , and 4 / 32bJ dπ= , 
respectively. Especially, the distance 1a  is fixed at 

0 / 2c . As the values of d , 0L  are changed, natural 
frequencies are calculated from computer simulation 
results by using a FEM program(Ansys). These are 
listed in Tables 1 and 2 according to their mode 
shapes, which are pure bending and coupled bending-
torsional modes, respectively. Each mode shape is 
shown in Figs. 4 and 5. The results from  Eqs. (44),  

Table 2. Exact solutions and FEM results for variation of 0,d L  (coupled bending-torsional vibration). 
unit : mm, rad./s 

0L  
 

4 6 8 10 12 

 d  Exact FEM Exact FEM Exact FEM Exact FEM Exact FEM 

0.2 143.3 142.0  114.7 114.4 85.4 85.3  65.8 65.7  52.5 52.5  

0.4 294.8 291.7  281.2 278.4 252.9 251.3 214.0 213.3 178.5 178.2  

0.6 444.2 440.9  429.5 426.4 403.7 401.2 365.4 363.8 321.5 320.6  

0.8 593.8 587.1  576.8 569.9 548.6 542.6 508.5 504.0 460.3 457.5  
1ω  

1.0 743.9 737.8  724.4 718.3 692.9 687.5 648.9 644.6 595.7 592.7  

0.2 192.9 192.5  162.0 160.4 157.4 155.6 155.9 154.0 155.0 153.1  

0.4 651.5 650.3  472.7 472.2 385.1 383.2 350.9 347.7 337.2 333.5  

0.6 1126.5 1120.8  889.2 888.1 711.8 710.9 614.9 613.1 566.3 563.6  

0.8 1555.0 1540.2  1314.0 1309.0 1073.1 1071.9 919.1 917.0 831.1 827.0  
2ω  

1.0 1973.5 1958.1  1728.9 1721.3 1442.2 1439.8 1238.0 1236.2  1112.8 1109.8 

0.2 422.0 417.5  421.5 416.6 420.9 415.8 420.3 415.1 419.8 414.5  

0.4 907.3 900.1  878.4 868.9 869.6 859.3 864.3 853.7 860.5 849.7  

0.6 1600.2 1597.5  1406.6 1398.7 1362.5 1353.0 1343.5 1333.3  1331.7 1321.3 

0.8 2441.7 2438.6  2014.1 2003.2 1898.9 1881.1 1855.0 1834.4  1830.9 1808.8 
3ω  

1.0 3315.8 3307.4  2674.6 2667.1 2466.2 2452.2 2389.1 2372.2  2349.5 2331.2 

0.2 820.5 811.8  820.6 811.1 820.1 810.3 819.6 809.6 819.1 809.0  

0.4 1670.9 1653.1  1669.1 1649.7 1665.8 1645.6 1662.4 1641.6  1659.2 1638.1 

0.6 2578.1 2560.1  2559.8 2540.0 2548.5 2527.8 2538.8 2517.7  2530.5 2509.0 

0.8 3565.0 3534.4  3492.3 3452.6 3465.5 3422.2 3446.9 3401.7  3431.8 3385.2 
4ω  

1.0 4634.5 4609.9  4456.6 4420.5 4407.0 4367.5 4378.0 4336.9  4355.8 4313.7 

0.2 1352.7 1338.5  1352.8 1337.5 1352.5 1336.5 1351.9 1335.6  1351.5 1334.9 

0.4 2731.7 2702.1  2732.9 2700.8 2730.5 2697.2 2727.4 2693.2  2724.3 2689.5 

0.6 4149.9 4116.8  4152.1 4117.1 4146.1 4110.2 4138.0 4101.5  4130.1 4093.1 

0.8 5607.3 5541.4  5607.6 5534.8 5597.0 5520.5 5583.0 5504.3  5569.4 5488.7 
5ω  

1.0 7092.8 7024.9  7088.4 7015.2 7073.8 6998.2 7055.3 6978.0  7036.1 6957.7 

0.2 2018.1 1997.1  2018.3 1995.7 2017.9 1994.4 2017.4 1993.4  2016.9 1992.5 

0.4 4061.7 4017.2  4063.8 4015.8 4061.7 4011.8 4058.6 4007.5  4055.5 4003.6 

0.6 6141.1 6088.6  6148.8 6093.7 6144.4 6088.0 6136.6 6079.4  6128.5 6070.7 

0.8 8252.2 8144.9  8270.4 8154.3 8265.1 8144.0 8252.5 8128.2  8238.4 8111.9 
6ω  

1.0 10379.1 10259.1  10416.8 10291.5 10414.4 10286.2 10399.0 10268.9  10379.9 10248.4 
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(a) 1st mode shape 

 
(b) 2nd mode shape 

 
(c) 3rd mode shape 

 
(d) 4th mode shape 

 
(e) 5th mode shape 

 
(f) 6th mode shape 

 
Fig. 4 Pure bending vibration mode shapes. 
 
 

    

       (a) 1st mode shape                  (b) 2nd mode shape 
 

    
       (c) 3rd mode shape                      (d) 4th mode shape 
 

    
       (e) 5th mode shape                       (f) 6th mode shape 
 
Fig. 5. Coupled bending-torsional vibration mode shapes. 
 
(45) and (50) by using a mathematical program [19] 
are also listed in the same tables. As shown in the 
tables, the exact solutions by this study well agree 
with the computer simulation results. Therefore, it is 

clear that  Eqs. (44) and (45) are the characteristic 
equations for the pure bending and coupled bending-
torsional vibration of this system. 

In addition,  Eqs. (A.15) and (46) are compared. 
The above values for design and material parameters 
with 0.6d =  and 0 10L =  are used for these calcu-
lations. The cross-sectional area and the area moment 
of inertia, which are twice that in  Eq. (A.15), are 
applied to  Eq. (46) because the number of beams is 
different in the two equations. Six natural frequencies 
extracted from two equations are listed in Table 3. As 
natural frequencies correspond exactly, it is revealed 
that the two characteristic equations are the same. 

This paper no longer deals with the pure bending 
vibration characteristics because they have been ana-
lyzed by previous studies [18, 20]. From now, the 
coupled bending-torsional vibration characteristics by  
Eq. (45) are analyzed. The variations of non-
dimensional parameter /d L (the ratio of the diameter 
to the length of the beam), 0 /L L (the ratio of the 
width of the rigid body to the length of the beam) are 
applied to  Eq. (45). The remaining parameters in  
Eq. (45) are expressed as the functions of /d L  and 

0 /L L  with given values in the above. 
 

1
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01
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.  (51) 

 
Fig. 6(a) to 6(f) shows the variations of normalized 

natural frequencies with 0 /L L  for two values 
/ 0.005, 0.01d L = . All normalized natural frequen-

cies monotonically decrease as 0 /L L  increases and 
they converge on fixed values in the given range of 

0 /L L . This result implies that the mass moment of 
inertia of the rigid body is more largely increased than 
the structural stiffness and the difference of their in-
creasing rates becomes smaller as 0 /L L  increases. 
The ratio of the first natural frequency approximately 
comes up to 3.5 at 0 / 1L L = . The reduction rate 
gradually weakens as moving to higher natural fre-
quency. In addition, it is discovered that the influence 
of the value of /d L  on the variation of natural fre-
quency becomes larger in a lower natural frequency 
than a higher one. In natural frequencies higher than 
the third one, the difference of the two curved lines is 
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almost proportional to that of the two values of /d L . 
Fig. 7(a) to 7(f) shows the tendency of normalized 

natural frequency with /d L . According to the value 
of /d L , the variations in six natural frequencies are 
plotted for two values 0 / 0.12, 0.36L L = . As can be 
seen, there is no doubt that the increase in /d L  
raises the natural frequencies. The value of 0 /L L  
highly affects the lower natural frequency as /d L  
increases. The higher natural frequency is scarcely 

 
Table 3. Comparison of mode frequency. 

unit : rad./s 

 1ω  2ω  3ω  4ω  5ω  6ω  

Eq. 8 34.27 316.20 969.46 1965.02 3275.92 4885.78

Eq. 44 34.27 316.20 969.46 1965.02 3275.92 4885.78

influenced by 0 /L L . 
It should be noted that a warping effect is added in 

the polar moment of inertia when a non-circular beam 
structure is treated. 
 

7. Experimental results of performance 
Fig. 8 shows a test actuator for experiments to be 

compared with the analysis in this paper. It is a small  
 

Table 4. Comparison of resonant frequency. 
 

Pure bending vibration Coupled bending-
torsional vibration 

1F 2F  3F  1F  2F  
Experiment 38 210 - 138 - 
Calculation 39.6 213.3 5339.2 144.6 5339.4 
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Fig. 6. Variation of natural frequency with 0 /L L  for two values / 0.005, 0.01d L = . 
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Fig. 8. Test actuator with two wire-suspensions. 
 
and slim actuator with two wire-suspensions. The 
exciting force and moment are generated from voice 
coil motors installed in this actuator. The force moves 
the moving part to the lateral direction and the mo-
ment rotates the moving part around an axis parallel 
to the wire-suspension to obtain the lateral and rotat-
ing motions of the moving part, respectively. Me-
chanical values used in this test are as follows. 

3

0.36, 0.2 , 11.45 ,
8250 / , 127

d mm L mm
kg m E GPa

υ
ρ
= = =
= =

  (Beam), 

3
0 1

9 3 9 3
1 2

11 , 0.7 , 0.45 10 ,
7.12 10 , 5.5 10

L mm a mm m kg
J kg m J kg m

−

− −

= = = ×
= × ⋅ = × ⋅

 (Rigid body), 

 
What has to be noticed is that m , 1J  and 2J  are 
not obtained from  Eqs. (6) with the given material 
and dimensional parameters because the moving part 
in the test actuator is not a rectangular parallelepiped. 
These values are only calculated by 3-D CAD pro-
gram. 

Figs. 9(a) and 9(b) show frequency responses from 
the test actuator. Measured frequencies are compared 
with calculated frequencies by  Eqs. (44), (45) or 
(A.15), (A.16) in Table 4. The first and second reso-
nant frequencies of pure bending vibration are quite  
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Fig. 7. Tendency of natural frequency by the variation of /d L  for two values 0 / 0.12, 0.36L L = . 
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(a) Pure bending vibration 
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(b) Coupled bending-torsional vibration 

 
Fig. 9. Frequency response characteristics of test actuator. 

 
similar. The first frequency of coupled bending-
torsional vibration is also similar. Other frequencies 
are not revealed in the experiment. In coupled bend-
ing-torsional vibration characteristics (see Fig. 9(b)), 
the first peak is inferred to be the first resonance of 
pure bending vibration because measured frequencies 
in two frequency response characteristics well coin-
cide with each other. Therefore, it is concluded that 
the mathematical analysis is useful in the estimation 
of the vibration behavior of the actuator. 
 

8. Conclusions 

In order to theoretically analyze a new configura-
tion for optical pickup actuators, the vibration of a 
beam structure which is composed of two beams hav-
ing a rigid body at their free ends is investigated. A 
mathematical model, in which boundary and joint 
conditions are applied, yields motion equations and 
continuity conditions. Solving free motion problems 
with them gives us two characteristic equations. One 
is an equation for pure bending vibration of the two 
beams with the rigid body. The other is for their cou-
pled bending-torsional vibration. Natural frequencies, 
which are obtained from these equations, are com-
pared with the result from FE analysis, and the exact-

ness of this study is verified. As dimensional varia-
tions are applied to the derived characteristic equation, 
the dynamic characteristics of this system are also 
analyzed. Finally, test results show that the vibration 
behavior of a uniform and slender beam-structure 
such as a new type optical pickup actuator can be 
simulated by this mathematical analysis. 
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Appendix  

For obtaining characteristic equations with dimen-
sional parameters for solving free motion problems, 
the following are defined. 

2 2 4 2, A
G EI
ρ ρβ ω γ ω= = ,  (A.1)  

1 1 1 1( , ) ( )cos , ( , ) ( )coss s s sx t x t v x t v x tφ φ ω ω= = ,  
1,2s = ,  (A.2) 

 
where, ω  is natural radian frequency. Using  Eqs. 
(A.1) and (A.2),  Eqs. (1), (2) and (16)-(20) become 
 

2
1 1( ) ( ) 0s sx xφ β φ′′ + = , 1,2s = ,  (A.3) 

(4) 4
1 1( ) ( ) 0s sv x v xγ− = , 1,2s = ,  (A.4) 

(0) (0) (0) 0s s sv vφ ′= = = ,  (A.5) 

1 2( ) ( )L Lφ φ= , 1 2( ) ( )v L v L′ ′= ,  

2 1 1 1( ) ( ) 2 ( )v L v L r Lφ= − ,  (A.6) 
2 2 2

1 1 1 1 1

1 2

( ) ( ) ( )
( ) ( ) 0

m v L ma v L mr L
EIv L EIv L

ω ω ω φ′+ −
′′′ ′′′+ + =

,  (A.7) 

2 2 2 2 2
1 1 1 1 1 1 1 1

1 2 1 2

( ) ( ) ( ) ( )
2 ( ) ( ) ( ) 0b b

m h r L ma r v L mr v L
r EIv L GJ L GJ L
ω φ ω ω

φ φ
′+ − −

′′′ ′ ′− − − =
,(A.8) 

2 2 2 2
1 1 1 1 1

2
1 1 1 1 2

( ) ( ) ( )

( ) ( ) ( ) 0

m k a v L ma v L

ma r L EIv L EIv L

ω ω
ω φ

′+ +
′′ ′′− − − =&&

. (A.9) 

 
The solutions of this boundary value problem, sat-

isfying boundary conditions (A.5), are 
 

1 1( ) sins sx B xφ β= , 1,2s = ,  (A.10) 

1 1 1 1 1( ) (cos cosh ) (sin sinh )s s sv x C x x D x xγ γ γ γ= − + − ,  
1,2s = .  (A.11) 

 
1 2B B=  is apparent by the first boundary condition 

1 2( ) ( )L Lφ φ=  in  Eq. (A.6). Inserting  Eqs. (A.10) 
and (A.11) into  Eqs. (A.6)-(A.9) gives the following 
matrix form.  

 
{ } { }0 , , 1,2,3,4,5ij ja b i j⎡ ⎤ = =⎣ ⎦ .  (A.12) 

 
The components of matrix ija⎡ ⎤⎣ ⎦  are as follows. 
 

11 0a = , 12a s sh= + , 13 ( )a c ch= − − ,  

14 ( )a s sh= − + , 15a c ch= − , 

21 12 sina r Lβ= , 22 ( )a c ch= − − ,  

23 ( )a s sh= − − , 24a c ch= − , 25a s sh= − , 
2

31 1 sina mr Lω β= ,  
2

31 1 sina mr Lω β=  
2

32

2
1

3

( )
( )

( )

a m c ch
ma s sh
EI s sh

ω
ω γ
γ

= − −
+ +
− −

,  

2 2 3
33 1( ) ( ) ( )a m s sh ma c ch EI c chω ω γ γ= − − − − + + ,  

3
34 ( )a EI s shγ= − − , 3

35 ( )a EI c chγ= + , 
2 2 2

41 1 1( ) sin 2 cosba m h r L GJ Lω β β β= − + + ,  
2 2

42 1 1 1( ) ( )a ma r s sh mr c chω γ ω= − + + − ,  (A.13)  
2 2

43 1 1 1( ) ( )a ma r c ch mr s shω γ ω= − + − , 
3

44 12 ( )a r EI s shγ= − , 3
45 12 ( )a r EI c chγ= − + , 

2
51 1 1 sina ma r Lω β= ,  
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2 2 2
52 1 1

2 2
1

( ) ( )
( ) ( )

a m k a s sh
ma c ch EI c ch

ω γ
ω γ

= + +
− − − +

,  

2 2 2
53 1 1

2 2
1

( ) ( )
( ) ( )

a m k a c ch
ma s sh EI s sh

ω γ
ω γ

= − + −
− − − +

,  

2
54 ( )a EI c chγ= − + , 2

55 ( )a EI s shγ= − + , 
 
where, sin sinhs sh L Lγ γ+ = + , sins sh Lγ− =  

sinh Lγ− , cos coshc ch L Lγ γ+ = + , and 
cos coshc ch L Lγ γ− = − . Modal vector is 

 
{ } { }1 1 1 2 2 .T

jb B C D C D=   (A.14) 

 
From det 0ija⎡ ⎤ =⎣ ⎦  for non-trivial solution, character-
istic equations are obtained. 

 
2 2 4 2 2 4 2 2 4 2 2 4

1 1

2 2 2 2 2
1 1

2 2 2 2 2
1 1 1

( 4 ) [( 4 )cos
2 ( 1)sin ]cosh

2 [( 1)cos 2 sin ]sinh

0,

k m E I k m E I L
mEI a k L L

mEI a k L a L L

ω γ ω γ γ
γω γ γ γ γ

γω γ γ γ γ γ γ

+ − −
+ + +

− + − +

=  

 

(A.15) 

2 2
1

3 2
1

(2 cos sin )(1 cos cosh )

2 sin (sin cosh cos sinh )

0.

bGJ L h m L L L

EI r L L L L L

β β ω β γ γ

γ β γ γ γ γ

− −

+ +

=

   

 (A.16) 
 
As explained in chapters 5 and 6,  Eqs. (A.15) and 

(A.16) are the characteristic equations for the pure 
bending and coupled bending-torsional vibrations of 
two beams caused by joint condition at their free ends. 
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